Feedback System Implementation
class FeedbackSystem:
    def __init__(self):
        self.feedback_history = []
        self.learning_rate = 0.01
        self.performance_metrics = PerformanceTracker()
        
    def collect_feedback(self, action, outcome, context):
        """Collect feedback from various sources"""
        feedback = {
            'timestamp': datetime.now(),
            'action': action,
            'outcome': outcome,
            'context': context,
            'sources': {}
        }
        
        # Human feedback
        if self.human_feedback_available():
            feedback['sources']['human'] = self.get_human_feedback(action, outcome)
        
        # Automated metrics
        feedback['sources']['metrics'] = self.calculate_performance_metrics(
            action, outcome
        )
        
        # Environmental feedback
        feedback['sources']['environment'] = self.assess_environmental_impact(
            action, outcome
        )
        
        self.feedback_history.append(feedback)
        return feedback
    
    def process_feedback(self, feedback):
        """Process and integrate feedback for learning"""
        # Weight different feedback sources
        weighted_score = (
            feedback['sources']['human'] * 0.5 +
            feedback['sources']['metrics'] * 0.3 +
            feedback['sources']['environment'] * 0.2
        )
        
        # Update agent's knowledge/policy
        self.update_agent_policy(feedback['action'], weighted_score)
        
        # Store for future reference
        self.store_learning_experience(feedback, weighted_score)

class ReinforcementLearningAgent:
    def __init__(self):
        self.q_table = defaultdict(lambda: defaultdict(float))
        self.learning_rate = 0.1
        self.discount_factor = 0.95
        self.exploration_rate = 0.1
        
    def learn_from_experience(self, state, action, reward, next_state):
        """Q-learning update"""
        current_q = self.q_table[state][action]
        max_next_q = max(self.q_table[next_state].values()) if next_state else 0
        
        # Q-learning formula
        new_q = current_q + self.learning_rate * (
            reward + self.discount_factor * max_next_q - current_q
        )
        
        self.q_table[state][action] = new_q
        
        # Decay exploration rate
        self.exploration_rate *= 0.995
    
    def select_action(self, state):
        """Epsilon-greedy action selection"""
        if random.random() < self.exploration_rate:
            return self.get_random_action(state)
        else:
            return self.get_best_action(state)

class ContinuousLearningSystem:
    def __init__(self):
        self.experience_buffer = ExperienceBuffer(max_size=10000)
        self.model = NeuralNetwork()
        self.performance_tracker = PerformanceTracker()
        
    def online_learning(self, experience):
        """Learn from new experience immediately"""
        # Add to experience buffer
        self.experience_buffer.add(experience)
        
        # Incremental model update
        if len(self.experience_buffer) > 100:
            batch = self.experience_buffer.sample(32)
            self.model.train_on_batch(batch)
            
        # Evaluate performance
        if self.should_evaluate():
            performance = self.evaluate_current_performance()
            self.adapt_learning_strategy(performance)
    
    def meta_learning(self):
        """Learn how to learn better"""
        # Analyze learning patterns
        learning_patterns = self.analyze_learning_history()
        
        # Adjust learning parameters
        self.optimize_learning_rate(learning_patterns)
        self.optimize_exploration_strategy(learning_patterns)
        
        # Update learning algorithm if needed
        if self.should_switch_algorithm(learning_patterns):
            self.switch_learning_algorithm()

# Example usage
feedback_system = FeedbackSystem()
rl_agent = ReinforcementLearningAgent()

# Simulate learning loop
for episode in range(1000):
    state = environment.reset()
    done = False
    
    while not done:
        action = rl_agent.select_action(state)
        next_state, reward, done = environment.step(action)
        
        # Learn from experience
        rl_agent.learn_from_experience(state, action, reward, next_state)
        
        # Collect additional feedback
        feedback = feedback_system.collect_feedback(action, reward, state)
        feedback_system.process_feedback(feedback)
        
        state = next_state