Feedback Mechanisms
Feedback Loop:
Action → Observation → Evaluation → Learning → Adaptation → Improved Action
Action → Observation → Evaluation → Learning → Adaptation → Improved Action
Human-in-the-Loop (HITL)
Direct human feedback on agent actions and decisions for supervised learning
Reward-Based Feedback
Numerical rewards/penalties based on action outcomes and goal achievement
Performance Metrics
Automated evaluation using predefined success criteria and KPIs
Peer Agent Feedback
Collaborative learning from other agents' experiences and knowledge
Environmental Signals
Learning from environmental changes and system state transitions
Feedback System Implementation
class FeedbackSystem:
def __init__(self):
self.feedback_history = []
self.learning_rate = 0.01
self.performance_metrics = PerformanceTracker()
def collect_feedback(self, action, outcome, context):
"""Collect feedback from various sources"""
feedback = {
'timestamp': datetime.now(),
'action': action,
'outcome': outcome,
'context': context,
'sources': {}
}
# Human feedback
if self.human_feedback_available():
feedback['sources']['human'] = self.get_human_feedback(action, outcome)
# Automated metrics
feedback['sources']['metrics'] = self.calculate_performance_metrics(
action, outcome
)
# Environmental feedback
feedback['sources']['environment'] = self.assess_environmental_impact(
action, outcome
)
self.feedback_history.append(feedback)
return feedback
def process_feedback(self, feedback):
"""Process and integrate feedback for learning"""
# Weight different feedback sources
weighted_score = (
feedback['sources']['human'] * 0.5 +
feedback['sources']['metrics'] * 0.3 +
feedback['sources']['environment'] * 0.2
)
# Update agent's knowledge/policy
self.update_agent_policy(feedback['action'], weighted_score)
# Store for future reference
self.store_learning_experience(feedback, weighted_score)
class ReinforcementLearningAgent:
def __init__(self):
self.q_table = defaultdict(lambda: defaultdict(float))
self.learning_rate = 0.1
self.discount_factor = 0.95
self.exploration_rate = 0.1
def learn_from_experience(self, state, action, reward, next_state):
"""Q-learning update"""
current_q = self.q_table[state][action]
max_next_q = max(self.q_table[next_state].values()) if next_state else 0
# Q-learning formula
new_q = current_q + self.learning_rate * (
reward + self.discount_factor * max_next_q - current_q
)
self.q_table[state][action] = new_q
# Decay exploration rate
self.exploration_rate *= 0.995
def select_action(self, state):
"""Epsilon-greedy action selection"""
if random.random() < self.exploration_rate:
return self.get_random_action(state)
else:
return self.get_best_action(state)
class ContinuousLearningSystem:
def __init__(self):
self.experience_buffer = ExperienceBuffer(max_size=10000)
self.model = NeuralNetwork()
self.performance_tracker = PerformanceTracker()
def online_learning(self, experience):
"""Learn from new experience immediately"""
# Add to experience buffer
self.experience_buffer.add(experience)
# Incremental model update
if len(self.experience_buffer) > 100:
batch = self.experience_buffer.sample(32)
self.model.train_on_batch(batch)
# Evaluate performance
if self.should_evaluate():
performance = self.evaluate_current_performance()
self.adapt_learning_strategy(performance)
def meta_learning(self):
"""Learn how to learn better"""
# Analyze learning patterns
learning_patterns = self.analyze_learning_history()
# Adjust learning parameters
self.optimize_learning_rate(learning_patterns)
self.optimize_exploration_strategy(learning_patterns)
# Update learning algorithm if needed
if self.should_switch_algorithm(learning_patterns):
self.switch_learning_algorithm()
# Example usage
feedback_system = FeedbackSystem()
rl_agent = ReinforcementLearningAgent()
# Simulate learning loop
for episode in range(1000):
state = environment.reset()
done = False
while not done:
action = rl_agent.select_action(state)
next_state, reward, done = environment.step(action)
# Learn from experience
rl_agent.learn_from_experience(state, action, reward, next_state)
# Collect additional feedback
feedback = feedback_system.collect_feedback(action, reward, state)
feedback_system.process_feedback(feedback)
state = next_state