Learning Agent Architecture

Core Learning Loop:
Experience → Learning → Knowledge Update → Improved Performance
Performance Element
Executes actions based on current knowledge and policies
Learning Element
Analyzes feedback and updates knowledge base
Critic
Evaluates performance and provides feedback signals
Problem Generator
Suggests exploratory actions for learning opportunities
Knowledge Base
Stores learned patterns, rules, and experiences
Learning Agent Implementation
class LearningAgent:
    def __init__(self, learning_rate=0.1, exploration_rate=0.1):
        self.knowledge_base = {}
        self.experience_buffer = []
        self.learning_rate = learning_rate
        self.exploration_rate = exploration_rate
        self.performance_history = []
        
    def act(self, state):
        """Choose action based on current knowledge and exploration"""
        if random.random() < self.exploration_rate:
            # Exploration: try new actions
            action = self.explore_action(state)
        else:
            # Exploitation: use best known action
            action = self.best_action(state)
        
        return action
    
    def learn_from_experience(self, state, action, reward, next_state):
        """Update knowledge based on experience"""
        experience = {
            'state': state,
            'action': action,
            'reward': reward,
            'next_state': next_state,
            'timestamp': time.time()
        }
        
        self.experience_buffer.append(experience)
        
        # Update knowledge using various learning methods
        self.update_q_values(state, action, reward, next_state)
        self.update_patterns(experience)
        self.evaluate_performance()
        
        # Periodic knowledge consolidation
        if len(self.experience_buffer) % 100 == 0:
            self.consolidate_knowledge()
    
    def update_q_values(self, state, action, reward, next_state):
        """Q-learning update rule"""
        state_key = self.state_to_key(state)
        
        if state_key not in self.knowledge_base:
            self.knowledge_base[state_key] = {}
        
        current_q = self.knowledge_base[state_key].get(action, 0)
        max_next_q = max(
            self.knowledge_base.get(
                self.state_to_key(next_state), {}
            ).values(), 
            default=0
        )
        
        # Q-learning formula
        new_q = current_q + self.learning_rate * (
            reward + 0.9 * max_next_q - current_q
        )
        
        self.knowledge_base[state_key][action] = new_q
    
    def update_patterns(self, experience):
        """Learn patterns from experience"""
        # Pattern recognition and rule extraction
        patterns = self.extract_patterns(experience)
        for pattern in patterns:
            self.add_to_knowledge_base(pattern)
    
    def consolidate_knowledge(self):
        """Consolidate and optimize learned knowledge"""
        # Remove outdated experiences
        cutoff_time = time.time() - 3600  # 1 hour
        self.experience_buffer = [
            exp for exp in self.experience_buffer 
            if exp['timestamp'] > cutoff_time
        ]
        
        # Optimize knowledge representation
        self.optimize_knowledge_base()
    
    def adapt_learning_rate(self):
        """Dynamically adjust learning parameters"""
        recent_performance = self.performance_history[-10:]
        if len(recent_performance) >= 10:
            if self.is_improving(recent_performance):
                self.exploration_rate *= 0.95  # Reduce exploration
            else:
                self.exploration_rate *= 1.05  # Increase exploration
                
        # Decay learning rate over time
        self.learning_rate *= 0.999

# Example: Adaptive web scraping agent
class AdaptiveScrapingAgent(LearningAgent):
    def __init__(self):
        super().__init__()
        self.success_patterns = {}
        self.failure_patterns = {}
    
    def scrape_page(self, url):
        state = self.analyze_page_structure(url)
        action = self.act(state)
        
        try:
            result = self.execute_scraping_action(action, url)
            reward = self.calculate_reward(result)
            self.learn_from_experience(state, action, reward, None)
            return result
        except Exception as e:
            self.learn_from_experience(state, action, -1, None)
            return None