Measuring Success and Business Value of AI Agents
Comprehensive measurement frameworks to track performance, calculate ROI, and demonstrate the business value of AI agent implementations.
class PerformanceTracker: def __init__(self): self.metrics = { 'response_time': [], 'accuracy_rate': [], 'throughput': [], 'error_rate': [], 'resource_usage': [] } def track_response_time(self, start_time, end_time): duration = end_time - start_time self.metrics['response_time'].append(duration) # Alert if performance degrades if duration > self.sla_threshold: self.alert_performance_issue(duration) def calculate_accuracy(self, predictions, ground_truth): correct = sum(p == gt for p, gt in zip(predictions, ground_truth)) accuracy = correct / len(predictions) self.metrics['accuracy_rate'].append(accuracy) return accuracy def generate_report(self): return { 'avg_response_time': np.mean(self.metrics['response_time']), 'accuracy_rate': np.mean(self.metrics['accuracy_rate']), 'error_rate': np.mean(self.metrics['error_rate']), 'throughput_per_hour': len(self.metrics['response_time']) }