Planning Algorithms
Core Planning Process:
Goal Definition → State Analysis → Action Generation → Path Optimization → Execution
Goal Definition → State Analysis → Action Generation → Path Optimization → Execution
Forward State-Space Search
Search from initial state toward goal using breadth-first, depth-first, or A* algorithms
Backward Goal Regression
Work backwards from goal to find necessary preconditions and actions
Hierarchical Task Networks (HTN)
Decompose complex tasks into simpler subtasks with hierarchical planning
Partial Order Planning
Plan actions without committing to specific execution order until necessary
Monte Carlo Tree Search
Use random sampling to explore possible action sequences and outcomes
Planning Engine Implementation
class PlanningEngine:
def __init__(self):
self.state_space = StateSpace()
self.action_library = ActionLibrary()
self.heuristics = HeuristicFunctions()
def plan(self, initial_state, goal_state, constraints=None):
"""Generate optimal action sequence to reach goal"""
# Initialize search
frontier = PriorityQueue()
frontier.put((0, initial_state, []))
explored = set()
while not frontier.empty():
cost, current_state, actions = frontier.get()
if self.is_goal_state(current_state, goal_state):
return self.optimize_plan(actions)
if current_state in explored:
continue
explored.add(current_state)
# Generate successor states
for action in self.get_applicable_actions(current_state):
if self.satisfies_constraints(action, constraints):
new_state = self.apply_action(current_state, action)
new_cost = cost + self.action_cost(action)
heuristic = self.heuristics.estimate(new_state, goal_state)
frontier.put((
new_cost + heuristic,
new_state,
actions + [action]
))
return None # No plan found
class HierarchicalPlanner:
def __init__(self):
self.task_network = TaskNetwork()
self.method_library = MethodLibrary()
def decompose_task(self, high_level_task):
"""Hierarchical task decomposition"""
if self.is_primitive_task(high_level_task):
return [high_level_task]
# Find applicable decomposition methods
methods = self.method_library.get_methods(high_level_task)
for method in methods:
if self.preconditions_satisfied(method):
subtasks = method.decompose(high_level_task)
# Recursively decompose subtasks
plan = []
for subtask in subtasks:
subplan = self.decompose_task(subtask)
plan.extend(subplan)
return plan
return None # No applicable method found
class ReasoningEngine:
def __init__(self):
self.knowledge_base = KnowledgeBase()
self.inference_engine = InferenceEngine()
self.belief_state = BeliefState()
def reason_about_action(self, action, current_state):
"""Reason about action effects and consequences"""
# Predict immediate effects
predicted_effects = self.predict_effects(action, current_state)
# Reason about side effects
side_effects = self.infer_side_effects(action, predicted_effects)
# Evaluate action utility
utility = self.evaluate_utility(predicted_effects, side_effects)
return {
'effects': predicted_effects,
'side_effects': side_effects,
'utility': utility,
'confidence': self.calculate_confidence(action)
}
def chain_of_thought_reasoning(self, problem):
"""Step-by-step reasoning process"""
reasoning_chain = []
current_problem = problem
while not self.is_solved(current_problem):
# Generate next reasoning step
step = self.generate_reasoning_step(current_problem)
reasoning_chain.append(step)
# Apply reasoning step
current_problem = self.apply_reasoning_step(
current_problem, step
)
# Check for contradictions or dead ends
if self.has_contradiction(current_problem):
return self.backtrack_reasoning(reasoning_chain)
return reasoning_chain
# Example usage
planner = PlanningEngine()
plan = planner.plan(
initial_state={"location": "home", "has_keys": True},
goal_state={"location": "office", "task_completed": True},
constraints={"time_limit": 60, "budget": 20}
)
reasoner = ReasoningEngine()
action_analysis = reasoner.reason_about_action(
action="drive_to_office",
current_state={"location": "home", "fuel": 0.8}
)