Planning Algorithms

Core Planning Process:
Goal Definition → State Analysis → Action Generation → Path Optimization → Execution
Forward State-Space Search
Search from initial state toward goal using breadth-first, depth-first, or A* algorithms
Backward Goal Regression
Work backwards from goal to find necessary preconditions and actions
Hierarchical Task Networks (HTN)
Decompose complex tasks into simpler subtasks with hierarchical planning
Partial Order Planning
Plan actions without committing to specific execution order until necessary
Monte Carlo Tree Search
Use random sampling to explore possible action sequences and outcomes
Planning Engine Implementation
class PlanningEngine:
    def __init__(self):
        self.state_space = StateSpace()
        self.action_library = ActionLibrary()
        self.heuristics = HeuristicFunctions()
        
    def plan(self, initial_state, goal_state, constraints=None):
        """Generate optimal action sequence to reach goal"""
        # Initialize search
        frontier = PriorityQueue()
        frontier.put((0, initial_state, []))
        explored = set()
        
        while not frontier.empty():
            cost, current_state, actions = frontier.get()
            
            if self.is_goal_state(current_state, goal_state):
                return self.optimize_plan(actions)
            
            if current_state in explored:
                continue
                
            explored.add(current_state)
            
            # Generate successor states
            for action in self.get_applicable_actions(current_state):
                if self.satisfies_constraints(action, constraints):
                    new_state = self.apply_action(current_state, action)
                    new_cost = cost + self.action_cost(action)
                    heuristic = self.heuristics.estimate(new_state, goal_state)
                    
                    frontier.put((
                        new_cost + heuristic,
                        new_state,
                        actions + [action]
                    ))
        
        return None  # No plan found

class HierarchicalPlanner:
    def __init__(self):
        self.task_network = TaskNetwork()
        self.method_library = MethodLibrary()
        
    def decompose_task(self, high_level_task):
        """Hierarchical task decomposition"""
        if self.is_primitive_task(high_level_task):
            return [high_level_task]
        
        # Find applicable decomposition methods
        methods = self.method_library.get_methods(high_level_task)
        
        for method in methods:
            if self.preconditions_satisfied(method):
                subtasks = method.decompose(high_level_task)
                
                # Recursively decompose subtasks
                plan = []
                for subtask in subtasks:
                    subplan = self.decompose_task(subtask)
                    plan.extend(subplan)
                
                return plan
        
        return None  # No applicable method found

class ReasoningEngine:
    def __init__(self):
        self.knowledge_base = KnowledgeBase()
        self.inference_engine = InferenceEngine()
        self.belief_state = BeliefState()
        
    def reason_about_action(self, action, current_state):
        """Reason about action effects and consequences"""
        # Predict immediate effects
        predicted_effects = self.predict_effects(action, current_state)
        
        # Reason about side effects
        side_effects = self.infer_side_effects(action, predicted_effects)
        
        # Evaluate action utility
        utility = self.evaluate_utility(predicted_effects, side_effects)
        
        return {
            'effects': predicted_effects,
            'side_effects': side_effects,
            'utility': utility,
            'confidence': self.calculate_confidence(action)
        }
    
    def chain_of_thought_reasoning(self, problem):
        """Step-by-step reasoning process"""
        reasoning_chain = []
        current_problem = problem
        
        while not self.is_solved(current_problem):
            # Generate next reasoning step
            step = self.generate_reasoning_step(current_problem)
            reasoning_chain.append(step)
            
            # Apply reasoning step
            current_problem = self.apply_reasoning_step(
                current_problem, step
            )
            
            # Check for contradictions or dead ends
            if self.has_contradiction(current_problem):
                return self.backtrack_reasoning(reasoning_chain)
        
        return reasoning_chain

# Example usage
planner = PlanningEngine()
plan = planner.plan(
    initial_state={"location": "home", "has_keys": True},
    goal_state={"location": "office", "task_completed": True},
    constraints={"time_limit": 60, "budget": 20}
)

reasoner = ReasoningEngine()
action_analysis = reasoner.reason_about_action(
    action="drive_to_office",
    current_state={"location": "home", "fuel": 0.8}
)